A representative sample of publications relating to the company’s work,..
Eichenseher et al. Linker-Improved Chimeric Endolysin Selectively Kills Staphylococcus aureus In Vitro, on Reconstituted Human Epidermis, and in a Murine Model of Skin Infection Antimicrobial Agents and Chemotherapy
Moreau et al. Topical S. aureus-Targeting Endolysin Significantly Improves Symptoms and QoL in Individuals With Atopic Dermatitis Journal of Drugs in Dermatology, December 2021, Volume 20, Issue 12
Sumrall et al. An Enzybiotic Regimen for the Treatment of Methicillin-Resistant Staphylococcus aureus Orthopaedic Device-Related Infection Antibiotics 2021, 101186
Al Kindi, Arwa et al. Staphylococcus aureus Second Immunoglobulin-Binding Protein drives atopic dermatitis via IL-33 The Journal of Allergy and Clinical Immunology (2020) YMAI 14770.
Fyhrquist, Nanna, et al. Microbe-host interplay in atopic dermatitis and psoriasis Nature communications 10.1 (2019): 1-15.
Lindahl, Lise M., et al. Antibiotics inhibit tumor and disease activity in cutaneous T-cell lymphoma Blood, The Journal of the American Society of Hematology 134.13 (2019): 1072-1083.
Linehan, Jonathan L., et al. Non-classical immunity controls microbiota impact on skin immunity and tissue repair Cell 172.4 (2018): 784-796.
Gutiérrez, Diana, et al. Are phage lytic proteins the secret weapon to kill Staphylococcus aureus? MBio 9.1 (2018): e01923-17.
Woo, Taylor E., and Christopher D. Sibley. The emerging utility of the cutaneous microbiome in the treatment of acne and atopic dermatitis Journal of the American Academy of Dermatology (2019).
Love, Michael J., et al. Potential for bacteriophage endolysins to supplement or replace antibiotics in food production and clinical care Antibiotics 7.1 (2018): 17.
Nakatsuji, Teruaki, et al. A commensal strain of Staphylococcus epidermidis protects against skin neoplasia Science advances 4.2 (2018): eaao4502.
Lio, P., & Chandan, N. (2019). Topical steroid withdrawal in atopic dermatitis. PRACTICAL DERMATOLOGY, 36-42.
Microbiol, 10(3), 309-311. doi:10.2217/fmb.14.142
Schmelcher, Mathias, David M. Donovan, and Martin J. Loessner. Bacteriophage endolysins as novel antimicrobials Future microbiology 7.10 (2012): 1147-1171.
Schmelcher, Mathias, et al. Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection Journal of Antimicrobial Chemotherapy 70.5 (2015): 1453-1465.
Willerslev-Olsen, Andreas, et al. Staphylococcal enterotoxin A (SEA) stimulates STAT3 activation and IL-17 expression in cutaneous T-cell lymphoma Blood 127.10 (2016): 1287-1296.
van Mierlo, Minke MF, et al. The influence of treatment in alpine and moderate maritime climate on the composition of the skin microbiome in patients with difficult to treat atopic dermatitis Clinical & Experimental Allergy (2019).
Byrd et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis, Science Translational Medicine, 9, eaal4651 (2017).
de Wit, J., et al. The prevalence of antibody responses against Staphylococcus aureus antigens in patients with atopic dermatitis: a systematic review and meta‐analysis British Journal of Dermatology 178.6 (2018): 1263-1271.
Chng, Kern Rei, et al. Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nature microbiology 1.9 (2016): 16106.
Totté et al. Prevalence and odds of Staphylococcus aureas carriage in atopic dermatitis: a systemic review and meta-analysis, British journal of Dermatology, 2016.
Hon, K. L., et al. Exploring Staphylococcus epidermidis in atopic eczema: friend or foe? Clinical and experimental dermatology 41.6 (2016): 659-663.
Williams et al. The Role of the Skinmicrobiome in Atopic Dermatitis, Curr Allergy Asthma Rep, 2015.
E.Grice and J. Segre The skin microbiome, Nat Rev Microbiol. 2011
Yasmine Belkaid and Julia A. Segre. Dialogue between skin microbiota and immunity, Science, November 2014
H.Brussow. Turning the inside out: The microbiology of Atopic Dermatitis, Environ. Microbiology 2015
Kobayashi et al. Dysbiosis and Staphylococcus aureus Colonization Drives Inflammation in Atopic Dermatitis. Immunity, April 2015
B.L. Herpers et al. Specific lysis of Staphylococcus aureus by the bacteriophage endolysin Staphefekt SA.100™: In vitro studies and human case series, presented at Antibiotic Alternatives for the New Millenium Conference, London, Nov 5-7, 2014
B.L. Herpers et al. Specific lysis of methicillin susceptible and resistant Staphylococcus aureus by the endolysin Staphefekt SA.100™, 24th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), Barcelona 2014
Allen, H.B. et al., Dermatology The Presence and Impact of Biofilm-Producing Staphylococci in Atopic Dermatitis. JAMA, 2014
Nakamura et al., Staphylococcus δ-toxin induces allergic skin disease activating mast cells. Nature, 2013
Chiu et al., Bacteria activate sensory neurons that modulate pain and inflammation. Nature, 2013
Gravitz, L. Turning, Turning a New Phage, Nature Medicine 2012 18:1318-1320
Fluit A.C., Marm van S., et al., Killing and lysis of S. aureus and other staphylococci by an endolysin. ICAAC 2012
Kong, Heidi H., et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis Genome research 22.5 (2012): 850-859.
Hagens, S., Loessner, M., Bacteriophage for control of foodborne Pathogens: Calculations and Considerations, Current Pharmacaceutical Biotechnology 2010, Vol. 11., pp 58-68
Les Dethlefsen, David A. Relman, Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation, PNAS, Sept 16, 2010
Soni, K., Nannapaneni, R., Bacteriophage Significantly Reduces Listeria monocytogenes on Raw Salmon Fillet Tissue, Journal of Food Protection 2010, Vol. 73, No. 1. pp 32-38
Soni, K., Nannapaneni, R., Hagens, S., Reduction of Listeria monocytogenes on the Surface of Fresh Channel Catfish Fillets by Bacteriophages Listex P100, Foodborne Pathogens and Disease, Jan 2010
Guenther, S., Huwyler, D., Richard, .S., Loessner M.J. ,Virulent Bacteriophage for Efficient Biocontrol of Listeria monocytogenes in Ready-To-Eat Foods, Applied and Environmental Microbiology, Jan. 2009, Vol. 75. No. 1. pp 93-100
Klumpp, J., J. Dorscht, R. Lurz, R. Bielmann, M. Wieland, M. Zimmer, R. Calendar, and M. J. Loessner. 2008. The terminally redundant, nonpermuted genome of Listeria bacteriophage A511: a model for the SPO1-like myoviruses of gram-positive bacteria. J Bacteriol 190 pp 5753-65.
Hagens, S., Offerhaus, M.L., Bacteriophages, New Weapons for Food Safety, Food Technology, April 2008, Vol. 62. No. 4. pp 46-54
Teufer, T., Von Jagow, C., Das grosse Fressen;Bakteriofagen in der Lebensmittelherstellung: eine rechtliche einordnung,
Zeitschrift für das gesamte Lebensmittelrecht (ZLR), Feb 2007, 34. Jahrgang, Vol 1 pp 25-50
Translation in English: Bacteriophages in the food production: a legal classification
Bradbury, J. Using Phages to Fight Bacteria. THE LANCET, Vol 363, February 21, 2004.Thiel, K. 21st Century Phage Therapy. Nature Biotechnology 22, 31 - 36 (2004)
Richard Stone Bacteriophage Therapy: Stalin's Forgotten Cure Science 2002 October 25; 298: 728-731. (in News Focus)
P. Barrow, M. Lovell, and A. Berchieri Jr. Use of Lytic Bacteriophage for Control of Experimental Escherichia coli Septicemia and Meningitis in Chickens and Calves
Clin. Diagn. Lab. Immunol., May 1, 1998; 5(3): 294 - 298.
B. Biswas, S. Adhya, P. Washart, B. Paul, A. N. Trostel, B. Powell, R. Carlton, and C. R. Merril
Bacteriophage Therapy Rescues Mice Bacteremic from a Clinical Isolate of Vancomycin-Resistant Enterococcus faecium
Infect. Immun., January 1, 2002; 70(1): 204 - 210. [PDF]
Carlton, R. Phage Therapy: Past History and Future Prospects.
Arch. Immun. Therap. Experim. 1999, 47, 267-274
Merril, C., Biswas, B., Carlton, R., and S. Adhya. Long-circulating bacteriophages as antibacterial agents. Proc. Natl. Acad. Sci.-US, April 1996,Vol. 93, pp. 3188-3192